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We study minimal conditions under which a function system is a representation
system in L,(a, b), —oo <a<b< + o, 0< p<oo, ie, any function f € L,(a, b) can
be represented by at least one L,-convergent series relative to this system. — © 1998
Academic Press

The interest in function systems of the type

{gon,k}n,keZ: {(p(anl_kb)}n,keza

where a>1, b>0, and ¢ is an arbitrary function from L,, arose in
connection with investigations of wavelets [ BDR, D, JL, JM, MI, Md,
Mey] and frames [ ChShl, ChSh2] and in connection with questions of
image compression. The questions of completeness of integer translates in
function spaces on R are considered in [ AO]. Moreover, the authors cited
above and others continue to attempt to generalize the classical systems
(Haar, trigonometric, Faber—Schauder, etc.) to get systems with new properties.

Since there exist an infinite number of function systems, the question
arises: “How can we find the optimal function system for a given problem?”
To answer such a question we should somehow classify all such function
systems.

Properties of function systems depend on the function spaces (for example;
there is no basis in L,(0, 1), 0 < p <1). Therefore, it is natural to consider
function systems in the spaces: (1) L,(0, 1), 0<p<1,(2) L,(0,1), 1<p<c0
(if the field of investigation is limited by the scale of L,, p > 0).

The notion of a representation system which generalizes the notion of a
basis was introduced by A. A. Talalyan [ T1]. There are investigations on
subsystems of representation systems [ I, F1, F2], on representation systems in
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d(L)[U, 1, Ol1, 02, F1, F2], and on the representation of complex functions
by series of exponentials [ K], etc.

DeFNITION 1 [T1, T2]. A system {f,} >, =L,, 0<p<oo, is called a
representation system in the space L, if for any f e L, there exists a series
> w1 Cifr such that

lim

n— oo

,=0.

S i Cr Jx
k=1

Here | fl,=({51/(2)? dt)™® VP 0 < p< o0, —o0 <a<b< +o0. This
definition generalizes to F-spaces.

DEFINITION 2. A system {f,} © = L,, 0<p< o0, is called a complete

system in the space L, if for any f' € L, and for any ¢ > 0 there exists a finite
sum Y% ¢, f; such that

=Y e
k=1

<é.
p

We can remark that each basis is a representation system, but not vice
versa and each representation system is a compete system, but not vice versa.
The results below are more general than the results in [F3, FO].

LemMa 1. Let peL,(a,b), —o<a<b< +o0, 1<p<wo, |2 (1) dt =
0#0. There exist constants A, l;, [, €R, 1#0; a<l, <, <b such that

1 1/p
o= <> () — (D), < 1. (1)
L1,

Here y . 4/(t) denotes the characteristic function of (c, d).

Proof. Let for simplicity 0 <d <1 and 4> 0 (if 6 <0 then consider — ).
For p>1 we have the inequalities

[1 —x|? <1 —px+cox? x| <3,
[1T—=x|2<14c¢q |x|+ ¢y |x]2, xeR,

with some positive constants c,, ¢;, ¢,. Let
1
Foop =L <t<l:|e()] <? )
o

1
F;‘,,P,zz{ll<t<12: |(p(t)|>2}, o> 0.
o
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Obviously, there exist 19, /9, a, such that if a</,<I9<I9<,<b,
o> o >0, then

(1) dt > 36, lp(1)]7 dt < §6,

Frx,ll.lz

f(a, O\ 1)

al o lewldi<ts, e el di<io.

Frpo Fyop i
1.h 1. D

If we take A, O<i<a<ay<l1, such that coi/da®<d/8(l,—1,) and
pi<l,—1,, then

1

T X () = 2(0)I

_ ! Q L—dgol7di+ | [1—ip(n)|? di

L—1 Fonn Fenon

2

(a, &\(};, bp)

ool

1
<

Fonn Finn

(=h)=p2]  otndrsei] lotld

2 _
FepA? ()7 di + =1 g lo(2)|” dt
4a®

Finn (a, B\(I}, 1)

3pl

<1——22 541,
8(l,—1y)

Lemma 2. Let @ely(a,b)nLy(ab), —wo<a<b<+ow, 0<p<l,
fz |@(2)|? dt =6 #0. Then there exist constants 2, 1;, 1, e R, 2 #0; a<l, <, <b
such that

1
o=—7 X, () —2e()l, <1,  0<p<lL
L—1

Here y . 4(t) denotes the characteristic function of (c, d).

Proof. 1f 0 < p<1, then we easily obtain by the Taylor formula that

IT—x[?<1—px—ex?  |x[<3,
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where ¢ is some positive constant. Let

1

b
PY=— || w0 =2 g7 di, ieR,

1
Fou,= {Z: L <t<ly, |Ag(1)] <2}:F,1,11,127

1
F3, = {t: 1, <t<ly, |2p(t)| >2} =F*, .

Then we obtain

;\/
P(2) = + +f <1--2 f p(1) dt
Fyi Fiin (a, DI\(1}, I) 12 - 11 . n
C 2 P
_ ()| di + | ez a
12 - 11 Fynn 12 - 11 F/t Il

o
L= 1y a b\, 1y

+ |Ap(1)|? dbt.

If te F¥, ,, then we have [19(1)|? <2277 [29(1)]? =227 |A]*| p(1)| Tt is
obvious that there exist 4y, /9, 19 € R, 19 <19 such that

7 22-r 1
0 0 2 2 _ 2 _
BB>lilPe [ lomPdi>go,  ==[ le(Pdi<go

Fnn Wl h

for all |A] < |4l <1 and ;<9 [,=15. Take A=A, and [} <19, I3 >[5 such
that the following inequality holds:

Aol” | ()| di < |4o]? ¢ 26.
CRONUTE)

Thus we get
P(Ay) + P(— 1) 1 ,
0 V<1t (130l | lp(0)]? di
2 =1 (a b\(I) 1Y)

lp(1)|? dr =227 |

—MOPMF B

1,1 1,1
20511, 15 A0, 1751y

|<p(z>|2dzD

=og<l1. |
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From Lemmas 1, 2 we have that there exist A€ R and a measurable set
QOc(a,b), 0<|Q| < oo, such that

1
g el =4 o), =0 <1,

where c=11if p>1 and c=p if 0< p < 1. Consider the function systems
{(pn(t)}neN such that

supo,=a<l1, (2)
where g, =inf {1€ R, Q = (a, b): (1/|Q|77) |xo(t) — 2@, ()] ,}. It is obvious
that if p>1 and sup,o,=0<1, then [5¢,(1)dt#0. If ¢>0 is such that
g +e=0a" <1, then there exist 4, €R, Q,= Ui-"=1 [a?, b7], such that

!

o= I
Qe

() =2 -@u)ll,<c+e=0"<1 (3)
and also sup, g, <o’ < 1. Let the system {¢,},.y satisfy the condition

VNeN, mes {(a,b)\nQN Q,,}:O. (4)

Here and below, we will use the term “mes” to signify Lebesgue’s measure.
Let x,=min,{a’}, y,=max,{b7}, and denote d(¢,)=y,—x,. Denote
supp @, = {t: ¢,(1) #0}. Let

d(¢,) >0, n—co, de,)#0. (5)

Let us call the function y,(7) the main characterizing function of the
element ¢,(7) of the system {¢,}. Let

A,=inf {x € (a, b): Ve>0 mes{(x, x +¢&) nsupp ¢,} #0},
B,=sup {ye(a,b):YVe>0mes{(y—e y) nsupp ¢,} #0}.
Denote D,=(4,, B,).

Below, we use Dunford and Schwartz’s definition [ DSch, p. 30, 2317 of
Vitali’s covering.

THEOREM 1.  Assume that a subsystem {@, } of the system {@,} ey <
Li(a,b), —oo<a<b< + oo satisfies the properties (3), (4), (5) and for
each N e N the set (a, b) is covered in Vitali’s sense by the family {an} paligen
Then if N € N the subsystem {gonk} o_ v Is a representation system in L(a, b).
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THEOREM 2.  Let for a subsystem { @, } of the system {@,} .y < L,(a, b),
—w<a<b< +o0, 1 < p<oo the following properties hold,

|an| - 0’ k_) w’ |an| ¢09

VNeN, mes {(a,b)\ U D,,k}zo,
k=N

sup g, =0 <1,
k

where a, =inf{/eR: (1/|an|1/”) \|){an(t)—igank(l)|\p}. Then for arbitrary
NeN the subsystem {(pnk} x—n IS a representation system in L,(a,b),
I<p<oo.

It is obvious that the case p=1 in Theorem 2 is a special case of
Theorem 1.

THEOREM 3.  Assume that a subsystem {@, | of the system {Q,},cy <
Ly(a,b)nL,(a,b), —co<a<b< +o0, 0<p<1, satisfies the properties
(3), (4), (5) and for each N eN the set (a, b) is covered in Vitali’s sense by
the family {Q,, } - y- Then for arbitrary NeN the subsystem {@,,}_ y is

a representation system in L,(a, b), 0 < p<1.

LemMa 3. Let for some subsystem {@,, | of the system {,} the conditions
of Theorem 1 or 2, or 3 be fulfilled. Then for any step function R(t) and arbitrary
NeN, there exist a finite sum P(t) =37y ¢ @, m> N, and o4, 0’ <o <1,
such that

IR(1) = P(0)[|, <o [R(2)] (6)

n

Z Ck gﬂnk

k=N

<4|Rl,, N<n<m, (7)
p

where o' <1 is defined in (3) (note that in the case of Theorem 2, condition
(3) is fulfilled too, and we put Q,, = D,, everywhere below for this theorem).

Proof. For brevity, we will denote p,=4, ¢, where 7, is taken
from (3), and {¢, } ¢, is a subsystem of the system {¢,}. Let

M
R(1)= Z dk)((uk,ﬁk)(l)
k=1

be the given step function, with { (o, )} the corresponding system of pairwise
disjoint intervals from (a, b), and x., 4(¢) denoting the characteristic function
of (¢, d). From Vitali’s Theorem [DSch, p. 232] we can obtain that for
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each finite interval E, = (o, ), | <k< M, arbitrary ¢ >0 there exist L
and sets Q,, such that mes{ Ex\U;_, 0, } <e, where 0, c E;, 0, 0 0, =
if /#i (note that in the case of Theorem 2 the set (a, b) is covered in
Vitali’s sense by the family {D,, }). Take such sets Q, that

<(go—0a") [R(1)],.

k=1 I=r, P
M /8 M I
+| X de X o, (1) Z k2P
k=1 I=r, =1 I=r P
ke ) (1/p)c
<(Gh—a") IRW)I, +<z dl? Y (o) /C’IQ,.,I>
1= e
<o IR,

We now prove (7). Let N<n<m. Then there exists an i for which
1 <i< M such that r,<n</;or l;<n<r,,; and

n

Z 1D

i—1

Z dy Z P+ Z ClPl

I=N y4 =1 I=r;
i—1 I i—1 I
Z Z =2 di ) 20,
= 1= =1 1=
+||d; Z XQ”l_di Z P
I=r, I=r; V4
i—1 n
Z die Z XQ,, ‘di > X0,
I=r; I=r; P
<4 [R(D)],-

Note that we put ¢;=0 for that / which was not used for constructing P(¢).
In particular, if [;<n<r;,, then 37_yc;p,=34_yvepr |
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Proof of Theorems 1, 2, and 3. Let 1 <o <1. Now we will use Lemma 3
and induction. Let f, = f. Let f, = f, where f'is any function from L,(a, b).
Then we find a sequence of step functions {R,}, k > 1, numbers

NN <m< - <Ny <m < ---,
functions f;, k>1, and linear combinations >7% N, C1P1> k=1, in the

system { p,} by induction such that the following is true:

my

1
Je=Sr-1— Z 1P [ fe—1— Rell, <2k+1-

=N,

For each R,, the linear combination > 7% N, C1D1 is constructed as it was in
the proof of Lemma 3. Then we obtain

my

Ri— Y cpi| <ot R,
I=N, P
n
Z 974 <4 ”Rkaa Nk<n<mk-
1=, »

To prove Theorems 1, 2, 3 we will verify that the series >.;° | ¢, p, represents
fin L, (we put ¢,;=0 for the remaining indices /). To finish the proof, let
us consider any sufficiently large n > 0 and define the index k£ > 1 such that
Ny_<n<my_,, k=2. Then

n k—1 m; n
f= ap| <|f— 2 Z ClPl +1 Y ap
1=, p i=11=n, =N, p
<fial, 1 2 ap
I=N,_, P

4
S fe2lp+4 1Rt 1, <5 ka_z\lp-i-?

On the other hand,

1 R T
[fe 1l <zz—5+0oolfe 2, <=5 +00| 57100 lfxsll,
2 2 2

1 1 L1
2k +0-02k 2+(60) k=3

<k(ap) =+ (00) 2 £ 1,

It can be easily seen that || f; |, = 0 for k —oo. |I

+ o () S,
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ConseQUENCE 1 [FO, Theorem la]. Let ¢ e L,(0,1) for 1 <q< oo and
@(t) outside [0, 1] be considered as equal to zero. If

1
f (1) di #0,
0

then {@, i} is a representation system in L,(0, 1) for any 0 < p<gq.

Proof. 1t is obvious that ¢, , =0 <1 and D, , =[k/2", k+1/2"] for all
n=0,1,.,k=0,1,.,2"—1.

CONSEQUENCE 2 [FO, Theorem 3]. Let o€ L{(R). If

j (1) di £0,

R

then {, .} is a representation system in Li(R).

ConseQUENCE 3 [FO, Theorem 1b]. Let pe L,(0,1), ||, #0, and ¢
outside [0, 1] be considered as equal to zero. Then { ¢, } is a representation
system in L,(0,1), 0<p<1.

CONSEQUENCE 4. Let @peLy(R)nL,(R), 0<p<l1, and |¢(t)],#0.
Then {@, i} is a representation system in L,(R), 0<p <1.

We will show now that the assumptions in Theorem 1 are important.
For brevity, let us consider the case when (a, b) =(0, 1).

(1) First, we will give an example when assumption (5) is violated,
but the other assumptions are fulfilled. Let inf,{d(¢,)} =0>0 and
mes(supp ¢,,) — 0. Let us, for that case, construct the example of a representa-
tion system. Let

go}tk(t)= 1, te (k2" k+12"+12"*Hu (1 =127+ 1), gp;,k(z):o
at the other points, where k=0, 1,..,2" ' —1,n=1,2, ..;

r ) =1, te(k+1/2" k+1/2"+1/2"*1) 0 (1 —1/2"*1 1), @7 (1)
=0 at the other points, where k=0, 1,..,2" ' —1, n=1,2, ..;

(p},’k(t)zl, te(k/2"—=1/2" 1 k+1/2") 0 (0, 1/27+1), (p},,k(z)zo at
the other points, where k=2""1,2""14+1,.,2"—1,n=1,2, ..;

pn =1, te(k/2"=1/2""" k/2") U (0, 1/2"+"), @) (1)=0 at the
other points, where k=2""1,2"=141,..,2"—1, n=1,2...
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It is obvious that the system {o, ,— @5 ) ={¥, s}, k=0,1,.,2"—1,
n=1,2,.., is a system of the following kind: {y, .} = {Y(2"t—k)}, k=0, ...,
2"—1, n=1,2, .., where lﬁ )y=1, te[0, 1], Y(1)=0, t¢[0, 1]. Thus the
system {y,} 7> 1= ={@n 1> Pait> k=0,1,.,2"—1,n=1,2, .., is a represen-
tation system in L,(0, 1), 0 < p < oo. We can see that for all fe L,[0, 1],
0< p < o0, there exists D1 CWr, lex|l <1, such that | f—S,,[, —» 0 and
I/ —S2n+1ll, >0, where Son=20m e and Sy, 41 =27 i
Now we will give an example of a non-complete system. Let ¢, (1) =1,
te U (12 + k2747 12+ k+1/277), k=0,1,..,2" =1, n=1,2, .; ¢, (1)
=0 in all the other points. It is obvious that {¢, ,(7), k=0,1,..,2"—1,
n=1,2, .} L0200} ez, » where zy(1) =1, 1€ [0, 11, 7, (0) = —1, re (4, 17,
(2) Let now g ¢,(1)dr=0, [>1, but the other assumptlons, (4), (5),
are fulfilled. Let us cons1der the system {¢, (1)} ={@(2"t—k)}, k=0, 1, ..,
2"—1,n=0,1,2,.. where (1) = f(1), te(127+11277,i=0, 1, .., and f,(¢)
are arbitrary functions such that {371 f;(¢) dr =0, f;(1)=0, t ¢ (1/2"+",1/2],
i=0,1... Thus the system {¢, (1), k=0,1,..,2"—1, n=0,1,..} L
{2 7.
(3) Letsup,o,=1, and for the system {¢,, }, the conditions (4), (5),
and [§¢,(t)dt#0, n>1, are fulfilled. For this case, let us construct a
non- complete system. Since Haar’s system {y,} = , is the basis in L,(0, 1),
p =1 then, by the Theorem of M. Krein, D. Milman, and M. Routman
[KrMR] about the stability of a basis, there exists, as a consequence,
{0, 1, 0,>0, such that for any system {g,} > |, lx,— g.l,<9,, the
system {g,} =, is a basis in L,(0,1), p>1, too. Then from the systems
{g,} >y, for which the condition |y, — g,|l,<d, is fulfilled, we choose the
following system: the following conditions [y, — g,l,<J,, lim o,=1,
0,<1, where

n— oo

= inf {101 =21 200 T

are fulfilled. It is obvious that the system {g,} >, is a basis, but the system
{g,} % n» N=2, is not a complete one in L,(0,1), p>1, although the
conditions (4), (5), and fo @,(t) dt#0, n>= 1, are fulfilled.

(4) Now we give an example of a non-complete system for the case
of Theorem 1, when the condition (4) is not fulfilled, but the other condi-
tions are fulfilled. Let ¢,(t)=1, te[0,1/2"], @, (t)=1/2*", te(1/2",1],
n=1,2,... Then x,=0, y,=1/2", and d(¢,)=1/2"—>0, 7,<1/2". We can
see that {@,(1)} 51 L{x1(2"(1+3)} ws-

(5) Now we will give an example of a non-complete system when the

assumption (5) of Theorem 3 is violated, but other assumptions are fulfilled.
Let



52 VADIM L. FILIPPOV

(p2n71(t)= 13 re [Oa%)s (panl(Z) =0a re [%9 l]a n= 15 25 () ¢2n(l)= 13
te[3,17;

®on(1)=0, 1€[0,3), n=1,2, ... Then the system {¢,}>_, is not a
complete system in L,(0, 1), 0<p<1.

The example from (1) is an example of a representation system in
L,(0,1), 0<p<1, too.

Remark 1. One easily observes from the proof that Theorem 1 carries
over to the spaces L[ (a, b)"], or even to L; spaces on arbitrary measurable
sets Q<R”, n>1.

Remark 2. Obviously, from the proof of Theorem 1, if we take the
function @ € L,(R"), n>1, such that | ¢(x) dx #0, then the system

Pri(x)=p(2F - x—1), xeR” ieZ" keZ,

is a representation system in L,(R"), n>1.

Remark 3. Theorem 1 shows us that the system {¢, .} = {@(a"t —bk)},
k=0,1,...2"—1,n=0,1, .., wherea>1,b>0, p(t)=1,1t€[0, 1], p(t)=0,
at the other points, is an optimal representation system in L,(a, b) (6 =0)
in order to quickly converge partial sums with the representative function
for the algorithm which is given above. In this context, instead of a number
n of elements of the system {¢,}, one should consider the finite sum " |Q;|.
For different systems, one should estimate the error of the approach through
the finite sum Y |Q;|.

Remark 4. One easily observes from the proof that Theorem 3 carries
over to the spaces L,[(a, b)"], 0<p<1, or even to L, spaces on arbitrary
measurable sets Q< R”, n>1.

Remark 5. Obviously, from the proof of Theorem 3, it is clear that if
we take the function ¢ eL,(R")NLy(R"), n=1, 0<p<1, such that
lell, #0, then the system

¢k,i(x) :(p(zk.x—i), XERns ieZna kGZ,

is a representation system in L, (R"), 0<p<1,n>1.
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