On the Completeness and Other Properties of Some Function Systems in $L_{p}, 0<p<\infty$

Vadim I. Filippov
Department of Mathematical Analysis, Saratov State University, Astrakhanskaya 83, 410026, Saratov, Russia
E-mail: filippov@scnit.saratov.su; adm.saratov@saratov.lek.ru (for Filippov Vadim)

Communicated by Ronald A. DeVore
Received March 21, 1995; accepted in revised form May 2, 1997

Abstract

We study minimal conditions under which a function system is a representation system in $L_{p}(a, b),-\infty \leqslant a<b \leqslant+\infty, 0<p<\infty$, i.e., any function $f \in L_{p}(a, b)$ can be represented by at least one L_{p}-convergent series relative to this system. © 1998 Academic Press

The interest in function systems of the type

$$
\left\{\varphi_{n, k}\right\}_{n, k \in Z}=\left\{\varphi\left(a^{n} t-k b\right)\right\}_{n, k \in Z},
$$

where $a>1, b>0$, and φ is an arbitrary function from L_{p}, arose in connection with investigations of wavelets [BDR, D, JL, JM, M1, Md, Mey] and frames [ChSh1, ChSh2] and in connection with questions of image compression. The questions of completeness of integer translates in function spaces on R are considered in [AO]. Moreover, the authors cited above and others continue to attempt to generalize the classical systems (Haar, trigonometric, Faber-Schauder, etc.) to get systems with new properties.

Since there exist an infinite number of function systems, the question arises: "How can we find the optimal function system for a given problem?" To answer such a question we should somehow classify all such function systems.

Properties of function systems depend on the function spaces (for example; there is no basis in $\left.L_{p}(0,1), 0<p<1\right)$. Therefore, it is natural to consider function systems in the spaces: (1) $L_{p}(0,1), 0<p<1$, (2) $L_{p}(0,1), 1 \leqslant p<\infty$ (if the field of investigation is limited by the scale of $L_{p}, p>0$).

The notion of a representation system which generalizes the notion of a basis was introduced by A. A. Talalyan [T1]. There are investigations on subsystems of representation systems [I, F1, F2], on representation systems in
$\Phi(L)$ [U, I, O1, O2, F1, F2], and on the representation of complex functions by series of exponentials [K], etc.

Definition 1 [T1, T2]. A system $\left\{f_{n}\right\}_{n=1}^{\infty} \subset L_{p}, 0<p<\infty$, is called a representation system in the space L_{p} if for any $f \in L_{p}$ there exists a series $\sum_{k=1}^{\infty} c_{k} f_{k}$ such that

$$
\lim _{n \rightarrow \infty}\left\|f-\sum_{k=1}^{n} c_{k} f_{k}\right\|_{p}=0 .
$$

Here $\|f\|_{p}=\left(\int_{a}^{b}|f(t)|^{p} d t\right)^{\min (1,1 / p)}, 0<p<\infty,-\infty \leqslant a<b \leqslant+\infty$. This definition generalizes to F -spaces.

Definition 2. A system $\left\{f_{n}\right\}_{n=1}^{\infty} \subset L_{p}, 0<p<\infty$, is called a complete system in the space L_{p} if for any $f \in L_{p}$ and for any $\varepsilon>0$ there exists a finite $\operatorname{sum} \sum_{k=1}^{k_{0}} c_{k} f_{k}$ such that

$$
\left\|f-\sum_{k=1}^{k_{0}} c_{k} f_{k}\right\|_{p}<\varepsilon .
$$

We can remark that each basis is a representation system, but not vice versa and each representation system is a compete system, but not vice versa.

The results below are more general than the results in [F3, FO].
Lemma 1. Let $\varphi \in L_{p}(a, b),-\infty \leqslant a<b \leqslant+\infty, 1 \leqslant p<\infty, \int_{a}^{b} \varphi(t) d t=$ $\delta \neq 0$. There exist constants $\lambda, l_{1}, l_{2} \in R, \lambda \neq 0 ; a \leqslant l_{1}<l_{2} \leqslant b$ such that

$$
\begin{equation*}
\sigma \equiv\left(\frac{1}{l_{2}-l_{1}}\right)^{1 / p}\left\|\chi_{\left(l_{1}, l_{2}\right)}(t)-\lambda \varphi(t)\right\|_{p}<1 . \tag{1}
\end{equation*}
$$

Here $\chi_{(c, d)}(t)$ denotes the characteristic function of (c, d).
Proof. Let for simplicity $0<\delta<1$ and $\lambda>0$ (if $\delta<0$ then consider $-\varphi$). For $p \geqslant 1$ we have the inequalities

$$
\begin{array}{ll}
|1-x|^{p} \leqslant 1-p x+c_{0} x^{2}, & |x| \leqslant \frac{1}{2}, \\
|1-x|^{p} \leqslant 1+c_{1}|x|+c_{2}|x|^{p}, & x \in \mathbf{R},
\end{array}
$$

with some positive constants c_{0}, c_{1}, c_{2}. Let

$$
\begin{aligned}
& F_{\alpha, l_{1}, l_{2}}=\left\{l_{1}<t<l_{2}:|\varphi(t)| \leqslant \frac{1}{2 \alpha}\right\}, \\
& F_{\alpha, l_{1}, l_{2}}^{*}=\left\{l_{1}<t<l_{2}:|\varphi(t)|>\frac{1}{2 \alpha}\right\}, \quad \alpha>0 .
\end{aligned}
$$

Obviously, there exist $l_{1}^{0}, l_{2}^{0}, \alpha_{0}$ such that if $a \leqslant l_{1} \leqslant l_{1}^{0}<l_{2}^{0} \leqslant l_{2} \leqslant b$, $\alpha_{0}>\alpha>0$, then

$$
\begin{aligned}
\int_{F_{\alpha, l_{1}, l_{2}}} \varphi(t) d t>\frac{7}{8} \delta, & \int_{(a, b) \backslash\left(l_{1}, l_{2}\right)}|\varphi(t)|^{p} d t<\frac{1}{8} \delta, \\
c_{1} \int_{F_{\alpha, l_{1}, l_{2}}^{*}}|\varphi(t)| d t<\frac{1}{8} \delta, & c_{2} \int_{F_{\alpha, l_{1}, l_{2}}}|\varphi(t)|^{p} d t<\frac{1}{8} \delta .
\end{aligned}
$$

If we take $\lambda, 0<\lambda<\alpha<\alpha_{0}<1$, such that $c_{0} \lambda / 4 \alpha^{2}<\delta / 8\left(l_{2}-l_{1}\right)$ and $p \lambda<l_{2}-l_{1}$, then

$$
\begin{aligned}
\frac{1}{l_{2}-l_{1}} & \left\|\chi_{\left(l_{1}, l_{2}\right)}(t)-\lambda \varphi(t)\right\|_{p}^{p} \\
= & \frac{1}{l_{2}-l_{1}}\left(\int_{F_{\alpha, l_{1}, l_{2}}}|1-\lambda \varphi(t)|^{p} d t+\int_{F_{\alpha, l_{1}, l_{2}}^{*}}|1-\lambda \varphi(t)|^{p} d t\right. \\
& \left.+\lambda^{p} \int_{(a, b) \backslash\left(l_{1}, l_{2}\right)}|\varphi(t)|^{p} d t\right) \\
\leqslant & \frac{1}{l_{2}-l_{1}}\left(\left(l_{2}-l_{1}\right)-p \lambda \int_{F_{\alpha, l_{1}, l_{2}}} \varphi(t) d t+c_{1} \lambda \int_{F_{\alpha, l_{1}, l_{2}}^{*}}|\varphi(t)| d t\right. \\
& \left.+c_{2} \lambda^{p} \int_{F_{, \alpha, l_{1}, l_{2}}}|\varphi(t)|^{p} d t+\frac{c_{0} \lambda^{2}\left(l_{2}-l_{1}\right)}{4 \alpha^{2}}+\lambda^{p} \int_{(a, b) \backslash\left(l_{1}, l_{2}\right)}|\varphi(t)|^{p} d t\right) \\
\leqslant & 1-\frac{3 p \lambda}{8\left(l_{2}-l_{1}\right)} \delta<1 .
\end{aligned}
$$

Lemma 2. Let $\varphi \in L_{2}(a, b) \cap L_{p}(a, b), \quad-\infty \leqslant a<b \leqslant+\infty, \quad 0<p<1$, $\int_{a}^{b}|\varphi(t)|^{2} d t=\delta \neq 0$. Then there exist constants $\lambda, l_{1}, l_{2} \in R, \lambda \neq 0 ; a \leqslant l_{1}<l_{2} \leqslant b$ such that

$$
\sigma \equiv \frac{1}{l_{2}-l_{1}}\left\|\chi_{\left(l_{1}, l_{2}\right)}(t)-\lambda \varphi(t)\right\|_{p}<1, \quad 0<p<1 .
$$

Here $\chi_{(c, d)}(t)$ denotes the characteristic function of (c, d).
Proof. If $0<p<1$, then we easily obtain by the Taylor formula that

$$
|1-x|^{p} \leqslant 1-p x-c x^{2}, \quad|x| \leqslant \frac{1}{2}
$$

where c is some positive constant. Let

$$
\begin{aligned}
P(\lambda) & =\frac{1}{l_{2}-l_{1}} \int_{a}^{b}\left|\chi_{\left(l_{1}, l_{2}\right)}(t)-\lambda \cdot \varphi(t)\right|^{p} d t, \quad \lambda \in R, \\
F_{\lambda, l_{1}, l_{2}} & =\left\{t: l_{1}<t<l_{2},|\lambda \varphi(t)| \leqslant \frac{1}{2}\right\}=F_{-\lambda, l_{1}, l_{2}}, \\
F_{\lambda, l_{1}, l_{2}}^{*} & =\left\{t: l_{1}<t<l_{2},|\lambda \varphi(t)|>\frac{1}{2}\right\}=F_{-\lambda, l_{1}, l_{2} .}^{*} .
\end{aligned}
$$

Then we obtain

$$
\begin{aligned}
P(\lambda)= & \int_{F_{\lambda, l_{1}, l_{2}}}+\int_{F_{\lambda, l_{1}, l_{2}}^{*}}+\int_{(a, b) \backslash\left(l_{1}, l_{2}\right)} \leqslant 1-\frac{p \lambda}{l_{2}-l_{1}} \int_{F_{\lambda, l_{1}, l_{2}}} \varphi(t) d t \\
& -\frac{c}{l_{2}-l_{1}} \int_{F_{\lambda, l_{1}, 2}}|\lambda \varphi(t)|^{2} d t+\frac{1}{l_{2}-l_{1}} \int_{F_{\lambda, l_{1}, l_{2}}^{*}}|\lambda \varphi(t)|^{p} d t \\
& +\frac{1}{l_{2}-l_{1}} \int_{(a, b) \backslash\left(l_{1}, l_{2}\right)}|\lambda \varphi(t)|^{p} d t .
\end{aligned}
$$

If $t \in F_{\lambda, l_{1}, l_{2}}^{*}$, then we have $|\lambda \varphi(t)|^{p} \leqslant 2^{2-p}|\lambda \varphi(t)|^{2}=2^{2-p}|\lambda|^{2}|\varphi(t)|^{2}$. It is obvious that there exist $\lambda_{0}, l_{1}^{0}, l_{2}^{0} \in R, l_{1}^{0}<l_{2}^{0}$ such that

$$
l_{2}^{0}-l_{1}^{0}>\left|\lambda_{0}\right|^{2} c, \quad \int_{F_{\lambda_{2}, l_{1}, l_{2}}}|\varphi(t)|^{2} d t>\frac{7}{8} \delta, \quad \frac{2^{2-p}}{c} \int_{F_{\lambda_{2}, l_{1}, l_{2}}}|\varphi(t)|^{2} d t<\frac{1}{8} \delta
$$

for all $|\lambda| \leqslant\left|\lambda_{0}\right|<1$ and $l_{1} \leqslant l_{1}^{0}, l_{2} \geqslant l_{2}^{0}$. Take $\lambda=\lambda_{0}$ and $l_{1}^{1} \leqslant l_{1}^{0}, l_{2}^{1} \geqslant l_{2}^{0}$ such that the following inequality holds:

$$
\left|\lambda_{0}\right|^{p} \int_{(a, b) \backslash\left(l_{1}^{1} l_{2}\right)}|\varphi(t)|^{p} d t<\left|\lambda_{0}\right|^{2} c \frac{2}{4} \delta .
$$

Thus we get

$$
\begin{aligned}
\frac{P\left(\lambda_{0}\right)+P\left(-\lambda_{0}\right)}{2} \leqslant & 1+\frac{1}{l_{2}^{1}-l_{2}^{1}}\left(\left|\lambda_{0}\right|^{p} \int_{(a, b) \backslash\left(l_{1}^{1} l_{2}^{1}\right)}|\varphi(t)|^{p} d t\right. \\
& \left.-\left|\lambda_{0}\right|^{2}\left[c \int_{F_{\lambda_{0}, l_{1}, l_{2}^{1}}}|\varphi(t)|^{2} d t-2^{2-p} \int_{F_{\lambda_{0}, l_{1}^{1}, l_{2}^{1}}^{*}}|\varphi(t)|^{2} d t\right]\right) \\
= & \sigma<1
\end{aligned}
$$

From Lemmas 1,2 we have that there exist $\lambda \in R$ and a measurable set $Q \subset(a, b), 0<|Q|<\infty$, such that

$$
\frac{1}{|Q|^{c / p}}\left\|\chi_{Q}(t)-\lambda \cdot \varphi(t)\right\|_{p}=\sigma<1,
$$

where $c=1$ if $p \geqslant 1$ and $c=p$ if $0<p<1$. Consider the function systems $\left\{\varphi_{n}(t)\right\}_{n \in N}$ such that

$$
\begin{equation*}
\sup \sigma_{n}=\sigma<1, \tag{2}
\end{equation*}
$$

where $\sigma_{n}=\inf \left\{\lambda \in R, Q \subset(a, b):\left(1 /|Q|^{c / p}\right)\left\|\chi_{Q}(t)-\lambda \varphi_{n}(t)\right\|_{p}\right\}$. It is obvious that if $p \geqslant 1$ and $\sup _{n} \sigma_{n}=\sigma<1$, then $\int_{a}^{b} \varphi_{n}(t) d t \neq 0$. If $\varepsilon>0$ is such that $\sigma+\varepsilon=\sigma^{\prime}<1$, then there exist $\lambda_{n} \in R, Q_{n}=\bigcup_{i=1}^{i_{n}}\left[a_{i}^{n}, b_{i}^{n}\right]$, such that

$$
\begin{equation*}
\sigma_{n}^{\prime}=\frac{1}{\left|Q_{n}\right|^{c / p}}\left\|\chi_{Q_{n}}(t)-\lambda_{n} \cdot \varphi_{n}(t)\right\|_{p} \leqslant \sigma+\varepsilon=\sigma^{\prime}<1 \tag{3}
\end{equation*}
$$

and also $\sup _{n} \sigma_{n}^{\prime} \leqslant \sigma^{\prime}<1$. Let the system $\left\{\varphi_{n}\right\}_{n \in N}$ satisfy the condition

$$
\begin{equation*}
\forall N \in \mathbf{N}, \quad \operatorname{mes}\left\{(a, b) \mid \bigcup_{n=N}^{\infty} Q_{n}\right\}=0 . \tag{4}
\end{equation*}
$$

Here and below, we will use the term "mes" to signify Lebesgue's measure.
Let $x_{n}=\min _{i}\left\{a_{i}^{n}\right\}, y_{n}=\max _{i}\left\{b_{i}^{n}\right\}$, and denote $d\left(\varphi_{n}\right)=y_{n}-x_{n}$. Denote $\operatorname{supp} \varphi_{n}=\left\{t: \varphi_{n}(t) \neq 0\right\}$. Let

$$
\begin{equation*}
d\left(\varphi_{n}\right) \rightarrow 0, \quad n \rightarrow \infty, \quad d\left(\varphi_{n}\right) \neq 0 . \tag{5}
\end{equation*}
$$

Let us call the function $\chi_{Q_{n}}(t)$ the main characterizing function of the element $\varphi_{n}(t)$ of the system $\left\{\varphi_{n}\right\}$. Let

$$
\begin{aligned}
& A_{n}=\inf \left\{x \in(a, b): \forall \varepsilon>0 \operatorname{mes}\left\{(x, x+\varepsilon) \cap \operatorname{supp} \varphi_{n}\right\} \neq 0\right\}, \\
& B_{n}=\sup \left\{y \in(a, b): \forall \varepsilon>0 \operatorname{mes}\left\{(y-\varepsilon, y) \cap \operatorname{supp} \varphi_{n}\right\} \neq 0\right\} .
\end{aligned}
$$

Denote $D_{n}=\left(A_{n}, B_{n}\right)$.
Below, we use Dunford and Schwartz's definition [DSch, p. 30, 231] of Vitali's covering.

Theorem 1. Assume that a subsystem $\left\{\varphi_{n_{k}}\right\}$ of the system $\left\{\varphi_{n}\right\}_{n \in N} \subset$ $L_{1}(a, b),-\infty \leqslant a<b \leqslant+\infty$ satisfies the properties (3), (4), (5) and for each $N \in \mathbf{N}$ the set (a, b) is covered in Vitali's sense by the family $\left\{Q_{n_{k}}\right\}_{k=N}^{\infty}$. Then if $N \in \mathbf{N}$ the subsystem $\left\{\varphi_{n_{k}}\right\}_{k=N}^{\infty}$ is a representation system in $L_{1}(a, b)$.

Theorem 2. Let for a subsystem $\left\{\varphi_{n_{k}}\right\}$ of the system $\left\{\varphi_{n}\right\}_{n \in N} \subset L_{p}(a, b)$, $-\infty \leqslant a<b \leqslant+\infty, 1 \leqslant p<\infty$ the following properties hold,

$$
\begin{gathered}
\left|D_{n_{k}}\right| \rightarrow 0, \quad k \rightarrow \infty, \quad\left|D_{n_{k}}\right| \neq 0, \\
\forall N \in \mathbf{N}, \quad \operatorname{mes}\left\{(a, b) \bigcup_{k=N}^{\infty} D_{n_{k}}\right\}=0, \\
\sup _{k} \sigma_{n_{k}}=\sigma<1,
\end{gathered}
$$

where $\sigma_{n_{k}}=\inf \left\{\lambda \in R:\left(1 /\left|D_{n_{k}}\right|^{1 / p}\right)\left\|\chi_{D_{n_{k}}}(t)-\lambda \varphi_{n_{k}}(t)\right\|_{p}\right\}$. Then for arbitrary $N \in \mathbf{N}$ the subsystem $\left\{\varphi_{n_{k}}\right\}_{k=N}^{\infty}$ is a representation system in $L_{p}(a, b)$, $1 \leqslant p<\infty$.

It is obvious that the case $p=1$ in Theorem 2 is a special case of Theorem 1.

Theorem 3. Assume that a subsystem $\left\{\varphi_{n_{k}}\right\}$ of the system $\left\{\varphi_{n}\right\}_{n \in N} \subset$ $L_{2}(a, b) \cap L_{p}(a, b),-\infty \leqslant a<b \leqslant+\infty, 0<p<1$, satisfies the properties (3), (4), (5) and for each $N \in \mathbf{N}$ the set (a, b) is covered in Vitali's sense by the family $\left\{Q_{n_{k}}\right\}_{k=N}^{\infty}$. Then for arbitrary $N \in \mathbf{N}$ the subsystem $\left\{\varphi_{n_{k}}\right\}_{k=N}^{\infty}$ is a representation system in $L_{p}(a, b), 0<p<1$.

Lemma 3. Let for some subsystem $\left\{\varphi_{n_{k}}\right\}$ of the system $\left\{\varphi_{n}\right\}$ the conditions of Theorem 1 or 2, or 3 be fulfilled. Then for any step function $R(t)$ and arbitrary $N \in \mathbf{N}$, there exist a finite sum $P(t) \equiv \sum_{k=N}^{m} c_{k} \varphi_{n_{k}}, m>N$, and $\sigma_{0}^{\prime}, \sigma^{\prime}<\sigma_{0}^{\prime}<1$, such that

$$
\begin{align*}
& \|R(t)-P(t)\|_{p} \leqslant \sigma_{0}^{\prime}\|R(t)\|_{p}, \tag{6}\\
& \left\|\sum_{k=N}^{n} c_{k} \varphi_{n_{k}}\right\|_{p} \leqslant 4\|R\|_{p}, \quad N \leqslant n \leqslant m, \tag{7}
\end{align*}
$$

where $\sigma^{\prime}<1$ is defined in (3) (note that in the case of Theorem 2, condition (3) is fulfilled too, and we put $Q_{n_{k}}=D_{n_{k}}$ everywhere below for this theorem).

Proof. For brevity, we will denote $p_{k}=\lambda_{n_{k}} \varphi_{n_{k}}$ where $\lambda_{n_{k}}$ is taken from (3), and $\left\{\varphi_{n_{k}}\right\}_{k=1}^{\infty}$ is a subsystem of the system $\left\{\varphi_{n}\right\}$. Let

$$
R(t)=\sum_{k=1}^{M} d_{k} \chi_{\left(\alpha_{k}, \beta_{k}\right)}(t)
$$

be the given step function, with $\left\{\left(\alpha_{k}, \beta_{k}\right)\right\}$ the corresponding system of pairwise disjoint intervals from (a, b), and $\chi_{(c, d)}(t)$ denoting the characteristic function of (c, d). From Vitali's Theorem [DSch, p. 232] we can obtain that for
each finite interval $E_{k}=\left(\alpha_{k}, \beta_{k}\right), 1 \leqslant k \leqslant M$, arbitrary $\varepsilon>0$ there exist L and sets $Q_{n_{l}}$ such that mes $\left\{E_{k} \backslash \bigcup_{l=1}^{L} Q_{n_{l}}\right\}<\varepsilon$, where $Q_{n_{l}} \subset E_{k}, Q_{n_{l}} \cap Q_{n_{i}}=\varnothing$ if $l \neq i$ (note that in the case of Theorem 2 the set (a, b) is covered in Vitali's sense by the family $\left\{D_{n_{k}}\right\}$). Take such sets $Q_{n_{l}}$ that

$$
\left\|R(t)-\sum_{k=1}^{M} d_{k} \sum_{l=r_{k}}^{l_{k}} \chi_{Q_{n_{l}}}(t)\right\|_{p} \leqslant\left(\sigma_{0}^{\prime}-\sigma^{\prime}\right)\|R(t)\|_{p} .
$$

Fix these numbers and elements. Then we obtain

$$
\begin{aligned}
\| R(t) & -\sum_{k=1}^{M} d_{k} \sum_{l=r_{k}}^{l_{k}} p_{l} \|_{p} \\
\leqslant & \left\|R(t)-\sum_{k=1}^{M} d_{k} \sum_{l=r_{k}}^{l_{k}} \chi_{Q_{n_{l}}}(t)\right\|_{p} \\
& +\left\|\sum_{k=1}^{M} d_{k} \sum_{l=r_{k}}^{l_{k}} \chi_{Q_{n_{l}}}(t)-\sum_{k=1}^{M} d_{k} \sum_{l=r_{k}}^{l_{k}} p_{l}(t)\right\|_{p} \\
\leqslant & \left(\sigma_{0}^{\prime}-\sigma^{\prime}\right)\|R(t)\|_{p}+\left(\sum_{k=1}^{M}\left|d_{k}\right|^{p} \sum_{l=r_{k}}^{l_{k}}\left(\sigma_{n_{l}}^{\prime}\right)^{p(1 / c)}\left|Q_{n_{l}}\right|\right)^{(1 / p) c} \\
\leqslant & \sigma_{0}^{\prime}\|R(t)\|_{p} .
\end{aligned}
$$

We now prove (7). Let $N \leqslant n \leqslant m$. Then there exists an i for which $1 \leqslant i \leqslant M$ such that $r_{i} \leqslant n \leqslant l_{i}$ or $l_{i}<n<r_{i+1}$ and

$$
\begin{aligned}
\left\|\sum_{l=N}^{n} c_{l} p_{l}\right\|_{p}= & \left\|\sum_{k=1}^{i-1} d_{k} \sum_{l=r_{k}}^{l_{k}} p_{l}+\sum_{l=r_{i}}^{n} c_{l} p_{l}\right\|_{p} \\
\leqslant & \left\|\sum_{k=1}^{i-1} d_{k} \sum_{l=r_{k}}^{l_{k}} p_{l}-\sum_{k=1}^{i-1} d_{k} \sum_{l=r_{k}}^{l_{k}} \chi_{Q_{n}}\right\|_{p} \\
& +\left\|d_{i} \sum_{l=r_{i}}^{n} \chi_{Q_{n_{l}}}-d_{i} \sum_{l=r_{i}}^{n} p_{l}\right\|_{p} \\
& +\left\|\sum_{k=1}^{i-1} d_{k} \sum_{l=r_{k}}^{l_{k}} \chi_{Q_{n_{l}}}\right\|_{p}+\left\|d_{i} \sum_{l=r_{i}}^{n} \chi_{Q_{n_{l}}}\right\|_{p} \\
\leqslant & 4\|R(t)\|_{p} .
\end{aligned}
$$

Note that we put $c_{l}=0$ for that l which was not used for constructing $P(t)$. In particular, if $l_{i}<n<r_{i+1}$, then $\sum_{l=N}^{n} c_{l} p_{l}=\sum_{l=N}^{l_{N}} c_{l} p_{l}$.

Proof of Theorems 1, 2, and 3. Let $\frac{1}{2} \leqslant \sigma_{0}^{\prime}<1$. Now we will use Lemma 3 and induction. Let $f_{0}=f$. Let $f_{0}=f$, where f is any function from $L_{p}(a, b)$. Then we find a sequence of step functions $\left\{R_{k}\right\}, k \geqslant 1$, numbers

$$
N \leqslant N_{1}<m_{1}<\cdots<N_{k}<m_{k}<\cdots,
$$

functions $f_{k}, k \geqslant 1$, and linear combinations $\sum_{l=N_{k}}^{m_{k}} c_{l} p_{l}, k \geqslant 1$, in the system $\left\{p_{l}\right\}$ by induction such that the following is true:

$$
f_{k}=f_{k-1}-\sum_{l=N_{k}}^{m_{k}} c_{l} p_{l}, \quad\left\|f_{k-1}-R_{k}\right\|_{p}<\frac{1}{2^{k+1}} .
$$

For each R_{k}, the linear combination $\sum_{l=N_{k}}^{m_{k}} c_{l} p_{l}$ is constructed as it was in the proof of Lemma 3. Then we obtain

$$
\begin{aligned}
\| R_{k}- & \sum_{l=N_{k}}^{m_{k}} c_{l} p_{l} \|_{p}
\end{aligned} \leqslant \sigma_{0}^{\prime}\left\|R_{k}\right\|_{p}, \quad \text { }\left\|\sum_{l=N_{k}}^{n} c_{l} p_{l}\right\|_{p} \leqslant 4\left\|R_{k}\right\|_{p}, \quad N_{k} \leqslant n \leqslant m_{k} .
$$

To prove Theorems $1,2,3$ we will verify that the series $\sum_{l=1}^{\infty} c_{l} p_{l}$ represents f in L_{p} (we put $c_{l}=0$ for the remaining indices l). To finish the proof, let us consider any sufficiently large $n>0$ and define the index $k \geqslant 1$ such that $N_{k-1} \leqslant n \leqslant m_{k-1}, k \geqslant 2$. Then

$$
\begin{aligned}
\left\|f-\sum_{l=N_{1}}^{n} c_{l} p_{l}\right\|_{p} & \leqslant\left\|f-\sum_{i=1}^{k-1} \sum_{l=N_{i}}^{m_{i}} c_{l} p_{l}\right\|_{p}+\left\|\sum_{l=N_{k-1}}^{n} c_{l} p_{l}\right\|_{p} \\
& \leqslant\left\|f_{k-2}\right\|_{p}+\left\|\sum_{l=N_{k-1}}^{n} c_{l} p_{l}\right\|_{p} \\
& \leqslant\left\|f_{k-2}\right\|_{p}+4\left\|R_{k-1}\right\|_{p} \leqslant 5\left\|f_{k-2}\right\|_{p}+\frac{4}{2^{k}} .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\left\|f_{k-1}\right\|_{p} & \leqslant \frac{1}{2^{k-1}}+\sigma_{0}^{\prime}\left\|f_{k-2}\right\|_{p} \leqslant \frac{1}{2^{k-1}}+\sigma_{0}^{\prime}\left(\frac{1}{2^{k-2}}+\sigma_{0}^{\prime}\left\|f_{k-3}\right\|_{p}\right) \\
& \leqslant \frac{1}{2^{k-1}}+\sigma_{0}^{\prime} \frac{1}{2^{k-2}}+\left(\sigma_{0}^{\prime}\right)^{2} \frac{1}{2^{k-3}}+\cdots+\left(\sigma_{0}^{\prime}\right)^{k-2}\|f\|_{p} \\
& \leqslant k\left(\sigma_{0}^{\prime}\right)^{k-1}+\left(\sigma_{0}^{\prime}\right)^{k-2}\|f\|_{p} .
\end{aligned}
$$

It can be easily seen that $\left\|f_{k-1}\right\|_{p} \rightarrow 0$ for $k \rightarrow \infty$.

Consequence 1 [FO, Theorem 1a]. Let $\varphi \in L_{q}(0,1)$ for $1 \leqslant q<\infty$ and $\varphi(t)$ outside $[0,1]$ be considered as equal to zero. If

$$
\int_{0}^{1} \varphi(t) d t \neq 0
$$

then $\left\{\varphi_{n, k}\right\}$ is a representation system in $L_{p}(0,1)$ for any $0<p \leqslant q$.
Proof. It is obvious that $\sigma_{n, k}=\sigma<1$ and $D_{n, k}=\left[k / 2^{n}, k+1 / 2^{n}\right]$ for all $n=0,1, \ldots, k=0,1, \ldots, 2^{n}-1$.

Consequence 2 [FO, Theorem 3]. Let $\varphi \in L_{1}(R)$. If

$$
\int_{R} \varphi(t) d t \neq 0
$$

then $\left\{\varphi_{n, k}\right\}$ is a representation system in $L_{1}(R)$.

Consequence 3 [FO, Theorem 1b]. Let $\varphi \in L_{2}(0,1),\|\varphi\|_{2} \neq 0$, and φ outside $[0,1]$ be considered as equal to zero. Then $\left\{\varphi_{n, k}\right\}$ is a representation system in $L_{p}(0,1), 0<p<1$.

Consequence 4. Let $\varphi \in L_{2}(R) \cap L_{p}(R), 0<p<1$, and $\|\varphi(t)\|_{p} \neq 0$. Then $\left\{\varphi_{n, k}\right\}$ is a representation system in $L_{p}(R), 0<p<1$.

We will show now that the assumptions in Theorem 1 are important. For brevity, let us consider the case when $(a, b) \equiv(0,1)$.
(1) First, we will give an example when assumption (5) is violated, but the other assumptions are fulfilled. Let $\inf _{n}\left\{d\left(\varphi_{n}\right)\right\}=\alpha>0$ and $\operatorname{mes}\left(\operatorname{supp} \varphi_{n}\right) \rightarrow 0$. Let us, for that case, construct the example of a representation system. Let

$$
\varphi_{n, k}^{1}(t)=1, t \in\left(k / 2^{n}, k+1 / 2^{n}+1 / 2^{n+1}\right) \cup\left(1-1 / 2^{n+1}, 1\right), \varphi_{n, k}^{1}(t)=0
$$

at the other points, where $k=0,1, \ldots, 2^{n-1}-1, n=1,2, \ldots$;

$$
\varphi_{n, k}^{2}(t)=1, t \in\left(k+1 / 2^{n}, k+1 / 2^{n}+1 / 2^{n+1}\right) \cup\left(1-1 / 2^{n+1}, 1\right), \varphi_{n, k}^{2}(t)
$$

$=0$ at the other points, where $k=0,1, \ldots, 2^{n-1}-1, n=1,2, \ldots$;

$$
\varphi_{n, k}^{1}(t)=1, t \in\left(k / 2^{n}-1 / 2^{n+1}, k+1 / 2^{n}\right) \cup\left(0,1 / 2^{n+1}\right), \varphi_{n, k}^{1}(t)=0 \text { at }
$$ the other points, where $k=2^{n-1}, 2^{n-1}+1, \ldots, 2^{n}-1, n=1,2, \ldots$;

$$
\varphi_{n, k}^{2}(t)=1, t \in\left(k / 2^{n}-1 / 2^{n+1}, k / 2^{n}\right) \cup\left(0,1 / 2^{n+1}\right), \varphi_{n, k}^{2}(t)=0 \text { at the }
$$ other points, where $k=2^{n-1}, 2^{n-1}+1, \ldots, 2^{n}-1, n=1,2 \ldots$.

It is obvious that the system $\left\{\varphi_{n, k}^{1}-\varphi_{n, k}^{2}\right\}=\left\{\psi_{n, k}\right\}, k=0,1, \ldots, 2^{n}-1$, $n=1,2, \ldots$, is a system of the following kind: $\left\{\psi_{n, k}\right\}=\left\{\psi\left(2^{n} t-k\right)\right\}, k=0, \ldots$, $2^{n}-1, n=1,2, \ldots$, where $\psi(t)=1, t \in[0,1], \psi(t)=0, t \notin[0,1]$. Thus the system $\left\{\psi_{l}\right\}_{l=1}^{\infty}=\left\{\varphi_{n, k}^{1}, \varphi_{n, k}^{2}\right\}, k=0,1, \ldots, 2^{n}-1, n=1,2, \ldots$, is a representation system in $L_{p}(0,1), 0<p<\infty$. We can see that for all $f \in L_{p}[0,1]$, $0<p<\infty$, there exists $\sum_{k=1}^{\infty} c_{k} \psi_{k},\left|c_{k}\right| \leqslant 1$, such that $\left\|f-S_{2 n}\right\|_{p} \rightarrow 0$ and $\left\|f-S_{2 n+1}\right\|_{p} \rightarrow 0$, where $S_{2 n}=\sum_{k=1}^{2 n} c_{k} \psi_{k}$ and $S_{2 n+1}=\sum_{k=1}^{2 n+1} c_{k} \psi_{k}$.

Now we will give an example of a non-complete system. Let $\varphi_{n, k}(t)=1$, $t \in \bigcup_{i=1}^{\infty}\left(1 / 2^{i}+k / 2^{i+n}, 1 / 2^{i}+k+1 / 2^{i+n}\right), k=0,1, \ldots, 2^{n}-1, n=1,2, \ldots ; \varphi_{n, k}(t)$ $=0$ in all the other points. It is obvious that $\left\{\varphi_{n, k}(t), k=0,1, \ldots, 2^{n}-1\right.$, $n=1,2, \ldots\} \perp\left\{\chi_{1}\left(2^{n} t\right)\right\}_{n \in Z_{+}}$, where $\chi_{1}(t)=1, t \in\left[0, \frac{1}{2}\right], \chi_{1}(t)=-1, t \in\left(\frac{1}{2}, 1\right]$.
(2) Let now $\int_{0}^{1} \varphi_{l}(t) d t=0, l \geqslant 1$, but the other assumptions, (4), (5), are fulfilled. Let us consider the system $\left\{\varphi_{n, k}(t)\right\}=\left\{\varphi\left(2^{n} t-k\right)\right\}, k=0,1, \ldots$, $2^{n}-1, n=0,1,2, \ldots$, where $\varphi(t)=f_{i}(t), t \in\left(1 / 2^{i+1}, 1 / 2^{i}\right], i=0,1, \ldots$, and $f_{i}(t)$ are arbitrary functions such that $\int_{2^{-i-1}}^{-i} f_{i}(t) d t=0, f_{i}(t)=0, t \notin\left(1 / 2^{i+1}, 1 / 2^{i}\right]$, $i=0,1 \ldots$. Thus the system $\left\{\varphi_{n, t}(t), k=0,1, \ldots, 2^{n}-1, \quad n=0,1, \ldots\right\} \perp$ $\left\{\chi_{1}\left(2^{n} t\right)\right\}_{n=0}^{\infty}$.
(3) Let $\sup _{n} \sigma_{n}=1$, and for the system $\left\{\varphi_{n_{k}}\right\}$, the conditions (4), (5), and $\int_{0}^{1} \varphi_{n}(t) d t \neq 0, n \geqslant 1$, are fulfilled. For this case, let us construct a non-complete system. Since Haar's system $\left\{\chi_{n}\right\}_{n=1}^{\infty}$ is the basis in $L_{p}(0,1)$, $p \geqslant 1$ then, by the Theorem of M. Krein, D. Milman, and M. Routman [KrMR] about the stability of a basis, there exists, as a consequence, $\left\{\delta_{n}\right\}_{n=1}^{\infty}, \delta_{n}>0$, such that for any system $\left\{g_{n}\right\}_{n=1}^{\infty},\left\|\chi_{n}-g_{n}\right\|_{p} \leqslant \delta_{n}$, the system $\left\{g_{n}\right\}_{n=1}^{\infty}$ is a basis in $L_{p}(0,1), p \geqslant 1$, too. Then from the systems $\left\{g_{n}\right\}_{n=1}^{\infty}$, for which the condition $\left\|\chi_{n}-g_{n}\right\|_{p} \leqslant \delta_{n}$ is fulfilled, we choose the following system: the following conditions $\left\|\chi_{n}-g_{n}\right\|_{p} \leqslant \delta_{n}, \lim _{n \rightarrow \infty} \sigma_{n}=1$, $\sigma_{n}<1$, where

$$
\sigma_{n}=\inf _{\lambda \in R}\left\{\left\|\left(1-\lambda g_{n}(t)\right) \chi_{D_{n}}(t)\right\|_{p} \frac{1}{\left|D_{n}\right|^{1 / p}}\right\},
$$

are fulfilled. It is obvious that the system $\left\{g_{n}\right\}_{n=1}^{\infty}$ is a basis, but the system $\left\{g_{n}\right\}_{n=N}^{\infty}, N \geqslant 2$, is not a complete one in $L_{p}(0,1), p \geqslant 1$, although the conditions (4), (5), and $\int_{0}^{1} \varphi_{n}(t) d t \neq 0, n \geqslant 1$, are fulfilled.
(4) Now we give an example of a non-complete system for the case of Theorem 1, when the condition (4) is not fulfilled, but the other conditions are fulfilled. Let $\varphi_{n}(t)=1, t \in\left[0,1 / 2^{n}\right], \varphi_{n}(t)=1 / 2^{2 n}, t \in\left(1 / 2^{n}, 1\right]$, $n=1,2, \ldots$. Then $x_{n}=0, y_{n}=1 / 2^{n}$, and $d\left(\varphi_{n}\right)=1 / 2^{n} \rightarrow 0, \sigma_{n} \leqslant 1 / 2^{n}$. We can see that $\left\{\varphi_{n}(t)\right\}_{n \geqslant 1} \perp\left\{\chi_{1}\left(2^{n}\left(t+\frac{1}{2}\right)\right)\right\}_{n \geqslant 1}$.
(5) Now we will give an example of a non-complete system when the assumption (5) of Theorem 3 is violated, but other assumptions are fulfilled. Let

$$
\begin{aligned}
& \quad \varphi_{2 n-1}(t)=1, t \in\left[0, \frac{1}{2}\right), \varphi_{2 n-1}(t)=0, t \in\left[\frac{1}{2}, 1\right], n=1,2, \ldots, \varphi_{2 n}(t)=1, \\
& t \in\left[\frac{1}{2}, 1\right] ; \\
& \quad \varphi_{2 n}(t)=0, t \in\left[0, \frac{1}{2}\right), n=1,2, \ldots \text { Then the system }\left\{\varphi_{n}\right\}_{n=1}^{\infty} \text { is not a } \\
& \text { complete system in } L_{p}(0,1), 0<p<1 .
\end{aligned}
$$

The example from (1) is an example of a representation system in $L_{p}(0,1), 0<p<1$, too.

Remark 1. One easily observes from the proof that Theorem 1 carries over to the spaces $L_{1}\left[(a, b)^{n}\right]$, or even to L_{1} spaces on arbitrary measurable sets $\Omega \subset \mathbf{R}^{n}, n \geqslant 1$.

Remark 2. Obviously, from the proof of Theorem 1, if we take the function $\varphi \in L_{1}\left(R^{n}\right), n \geqslant 1$, such that $\int_{R^{n}} \varphi(x) d x \neq 0$, then the system

$$
\varphi_{k, \mathbf{i}}(\mathbf{x})=\varphi\left(2^{k} \cdot \mathbf{x}-\mathbf{i}\right), \quad \mathbf{x} \in \mathbf{R}^{n}, \quad \mathbf{i} \in \mathbf{Z}^{n}, \quad k \in \mathbf{Z},
$$

is a representation system in $L_{1}\left(R^{n}\right), n \geqslant 1$.
Remark 3. Theorem 1 shows us that the system $\left\{\varphi_{n, k}\right\}=\left\{\varphi\left(a^{n} t-b k\right)\right\}$, $k=0,1, \ldots, 2^{n}-1, n=0,1, \ldots$, where $a>1, b>0, \varphi(t)=1, t \in[0,1], \varphi(t)=0$, at the other points, is an optimal representation system in $L_{1}(a, b)(\sigma=0)$ in order to quickly converge partial sums with the representative function for the algorithm which is given above. In this context, instead of a number n of elements of the system $\left\{\varphi_{i}\right\}$, one should consider the finite sum $\sum\left|Q_{i}\right|$. For different systems, one should estimate the error of the approach through the finite sum $\sum\left|Q_{i}\right|$.

Remark 4. One easily observes from the proof that Theorem 3 carries over to the spaces $L_{p}\left[(a, b)^{n}\right], 0<p<1$, or even to L_{p} spaces on arbitrary measurable sets $\Omega \subset \mathbf{R}^{n}, n \geqslant 1$.

Remark 5. Obviously, from the proof of Theorem 3, it is clear that if we take the function $\varphi \in L_{p}\left(R^{n}\right) \cap L_{2}\left(R^{n}\right), n \geqslant 1,0<p<1$, such that $\|\varphi\|_{2} \neq 0$, then the system

$$
\varphi_{k, \mathbf{i}}(\mathbf{x})=\varphi\left(2^{k} \cdot \mathbf{x}-\mathbf{i}\right), \quad \mathbf{x} \in \mathbf{R}^{n}, \quad \mathbf{i} \in \mathbf{Z}^{n}, \quad k \in \mathbf{Z},
$$

is a representation system in $L_{p}\left(R^{n}\right), 0<p<1, n \geqslant 1$.

ACKNOWLEDGMENTS

[^0]
REFERENCES

[AO] A. Atzmon and A. Olevskiǐ, Completeness of integer translates in function spaces on R, J. Approx. Theory 87 (1996), 291-327.
[BDR] C. De Boor, R. A. DeVore, and A. Ron, Approximation from shift-invariant subspaces of $L_{2}\left(\mathbf{R}^{d}\right)$, Trans. Amer. Math. Soc. 341 (1994), 780-787.
[ChSh1] C. K. Chui and X. Shi, "Bessel Sequences and Affine Frames," CAT Report, No. 267, April 1992.
[ChSh2] C. K. Chui and X. Shi, "On Lp-Boundedness of Affine Frame Operators," CAT Report, No. 282 November 1992.
[D] I. Daubechies, "Ten Lectures on Wavelets," SIAM, Philadelphia, 1992.
[DSch] N. Dunford and J. T. Schwartz, "Linear Operators. Part I. General Theory," Moscow, 1962. [In Russian]
[FO] V. Filippov and P. Oswald, Representation in L^{p} by series of translates and dilates of one function, J. Approx. Theory 82 (1995), 15-29.
[F1] V. I. Filippov, On subsystems of Faber-Schauder systems in function spaces, Izv. Vuzov Mat. 2 (1991), 78-85. [In Russian]
[F2] V. I. Filippov, On subsystems of the Haar system in the space E_{φ} with $\underline{\lim }_{t \rightarrow \infty} \varphi(t) / t=0$, Mat. Zametki 51 (No. 6) (1992), 97-106. [In Russian]
[F3] V. I. Filippov, Some questions on function theory, in "Third Souslin Conference, July 20-30, 1994," pp. 8-9, Abstracts, Saratov, Russia, 1994.
[I] V. I. Ivanov, Representation of measurable functions by multiple trigonometric series, Trudy Mat. Inst. Steklov. 164 (1983), 100-123. [In Russian]
[JL] R. Q. Jia and J. J. Lei, Approximation by multiinteger translates of functions having global support, J. Approx. Theory 72 (1993), 2-23.
[JM] R. Q. Jia and C. Micchelli, Using the refinement equation for the construction of pre-wavelets. II. Powers of two, in "Curves and Surfaces" (P. J. Laurent, A. LeMehaute, and L. L. Schumaker, Eds.), pp. 209-246, Academic Press, New York, 1991.
[K] Ju. F. Korobejnik, Representation systems, Uspekhi Mat. Nauk. 36 (1981), 73-126.
[KrMR] M. Krein, D. Milman, and M. Routman, About one property of a basis in the Banach space, Harkov Zap. Mathtov-va 4 (1940), 39-51. [In Russian]
[M1] S. Mallat, Multiresolution analysis and wavelets, Trans. Amer. Math. Soc. 315 (1989), 69-88.
[Md] W. Madych, Some elementary properties of multiresolution analyzes of $L^{2}\left(\mathbf{R}^{n}\right)$, in "Wavelets-A Tutorial in Theory and Applications" (C. K. Chui, Ed.), pp. 259-294, Academic Press, Boston, 1992.
[Mey] Y. Meyer, "Ondelettes et Opérateurs. I. Ondelettes; II, Opérateurs de CalderónZygmund; III. Opérateurs multilinéaires," Hermann, Paris, 1990.
[O1] P. Oswald, On some convergence properties of Haar-Fourier series in the classes $\varphi(L)$, Acta Math. Hungar. 42, Nos. 3-4 (1983), 279-293.
[O2] P. Oswald, Fourier series and conjugate function in the classes $\varphi(L)$, Anal. Math. 2 (1982), 287-303.
[T1] A. A. Talalyan, On systems with respect to which series represent arbitrary measurable functions, Mat. Sbornik 76, No. 1 (1968), 39-51. [In Russian]
[T2] A. A. Talalyan, Representation of functions of the space $L_{p}[0,1], 0<p<1$, by orthogonal series, Acta Math. Acad. Sci. Hungar. 21, Nos. 1-2 (1970), 1-9.
[U] P. L. Uljanov, Representations of functions by series and the classes $\Phi(L)$, Uspekhi Math. Nauk. 27 (No. 2) (1972), 3-52. [In Russian]

[^0]: The author thanks Professor David Meyer and a referee for their comments and valuable suggestions, which helped to improve the paper.

